Property -1

If rows be changed into columns and columns into the rows, the determinant remains unaltered.

Property -2

If any two row (or columns) of a determinant are interchanged, the resulting determinant is the negative of the original determinant.

Remark: If any line of a determinant D be passed over ‘m’ parallel lines, the resulting  determinant D¢ is equal to (-1)m D Property -3

If two rows (or two columns) in a determinant have corresponding entries that are equal (or proportional), the value of determinant is equal to zero.

Property –4

If each of the entries of one row (or columns) of a determinant is multiplied by a nonzero constant k, then the determinant gets multiplied by k.

Property-5

If each entry in a row (or column) of a determinant is written as the sum of two or more terms then the determinant can be written as the sum of two or more determinants.

Property-6

If to each element of a line (row or column) of a determinant be added the equimutiples of the corresponding elements of one or more parallel lines, the determinant remains unaltered Property –7

If each entry in any row (or any column) of determinant is zero, then the value of determinant is equal to zero.

Property-8

If a determinant D vanishes for x = a, then (x-a) is a factor of D, In other words, if two      rows (or two columns) become identical for x = a. then (x- a) is a factor of D. Note:

In general, if r rows (or r columns) become identical when a is substituted for x, then
(x-a) r-1 is a factor of D.

Property -9

If in a determinant (of order three or more) the elements in all the rows (columns) are in A.P. with same or different common difference, the value of the determinant is zero.

Remarks:

• It is important to know that all the properties applicable to rows are also equally applicable to columns but independently
• Whenever rows are disturbed by applications of properties of determinants, at least one of the row shall remain in original shape. In other words all the rows shall not be disturbed at a time.
• It is always desirable to try to bring in as many zeros as possible in any row ( or column) and then expand the determinant with respect to that row (column). Mere expansion from the outset should be avoided as far as possible. Where Ci ( i = 1,2, 3 ) are the columns and Rj ( j=1,2,3) are the rows of the determinant.
 « Click Here for Previous Topic Click Here for Next Topic »