SPECIAL MATRICES
Symmetric and Skew Symmetric Matrices:
A square matrix A = [aij] is said to be symmetric when aij = aji for all i and j, i.e. A = A¢. If aij = -aji for all i and j and all the leading diagonal elements are zero, then the matrix is called a skew symmetric matrix, i.e. A = – A’.
Orthogonal Matrix:
Any square matrix A of order n is said to be orthogonal if AA¢ = A¢ A = .
Idempotent Matrix:
A square matrix A is called idempotent provided it satisfies the relation A2 = A.
Involuntary Matrix:
A square matrix A is said to be involuntary if A2 = I.
Nilpotent Matrix:
A square matrix A is called a nilpotent matrix if there exists a positive integer m such that
Am = O, where O is a null matrix. If m is the least positive integer such that Am = O, then m is called the index of the nilpotent matrix A.
« Click Here for Previous Topic | Click Here for Next Topic » |
All Matrices Topics Maths Notes Physics Notes Chemistry Notes Biology Notes
To get fastest exam alerts and government job alerts in India, join our Telegram channel.
Discussion about this post