Properties of Modulus

  • |z| = 0  =>     z = 0 + i0
  • |z1 – z2 | denotes  the distance between z1 and z2 .
  • –|z| ≤ Re(z)  ≤ |z| ; equality holds on right or on left side depending upon z being positive real or negative  real.
  • –|z| ≤ Imz ≤ |z| ; equality holds on right side or on left side depending upon z being purely imaginary and above the real axes or below the real axes.
  • |z| ≤ |Re(z)| + |Im(z)| ≤ |z| ;  equality  holds  on left  side  when z is  purely  imaginary  or  purely  real  and  equality  holds  on right  side when |Re(z)| = |Im(z)|.
  • |z|2 = z                                                           
  • |z1z2| = |z1| |z2|

In general |z1 z2 . . . . .zn| = |z1| |z2| . . . . . |zn|

  • |zn| = |z|n , n Î I
  • |z1+z2| ≤ |z1| + |z2| => |z1+z2+ … +zn| ≤ |z1| + |z2| + … + |zn|; equality holds  if  origin,  z1, z2, z3  …, zn  are  collinear  and z1 , z2, z3­, …,zn  are  on the  same  side  of the   origin.
  • |z1 – z2| ³ ||z1| – |z2|| ; equality holds  when  arg(z1/z2)  = π  i.e.  origin, z1, z2  are  collinear and  z1 and  z­2 are  on the  opposite  side  of the  origin.
  • |z1 + z2|2 = (z1 + z2) (1 + 2) = |z1|2 + |z2|2 + z12 + z21 = |z1|2 + |z2|2 + 2Re(z12)
  • |z1 – z2|2 = (z1 – z2) (12) = |z1|2 + |z2|2 – z12 – z21 = |z1|2 + |z2|2 – 2Re(z12)

Properties of Argument:

  • arg(z1z2) = Θ1 + Θ2 = arg(z­­1) + arg(z2)
  • arg (z1/z2) = Θ1 – Θ2 = arg(z1) – arg(z2)
  • arg (zn) = n arg(z),  n inclusing of  all I

Note:

  • In the above result Θ1 + Θ2  or Θ1  – Θ2 are not necessarily the principle values of the argument of corresponding complex numbers. E.g arg(zn) = n arg(z) only shows that one of the argument of zn is equal to n arg(z) (if we consider arg(z) in the principle range)
  • arg(z) = 0, π  => z is a purely  real number => z = .
  • arg(z) = π/2, –π/2  => z is a purely  imaginary number => z = –.

Note that the property of argument is the same as the property of logarithm.

Properties of Modulus and Properties of Arguments

= |z1| + |z2| = LHS.

« Click Here for Previous Topic Click Here for Next Topic »

Click Here for Class XI Classes Maths All Topics Notes

You wish to report grammatical or factual errors within our online articles, you can let us know using the article feedback form.

comments