NCERT Solutions by AglaSem

NCERT Solutions Class 11 Biology Chapter 13 Photosynthesis in higher plants – Here are all the NCERT solutions for Class 11 Biology Chapter 13. This solution contains questions, answers, images, explanations of the complete chapter 13 titled Photosynthesis in higher plants of Biology taught in Class 11. If you are a student of Class 11 who is using NCERT Textbook to study Biology, then you must come across chapter 13 Photosynthesis in higher plants. After you have studied the lesson, you must be looking for answers of its questions. Here you can get complete NCERT Solutions for Class 11 Biology Chapter 13 Photosynthesis in higher plants in one place.

NCERT Solutions Class 11 Biology Chapter 13 Photosynthesis in higher plants

Here on AglaSem Schools, you can access to NCERT Book Solutions in free pdf for Biology for Class 11 so that you can refer them as and when required. The NCERT Solutions to the questions after every unit of NCERT textbooks aimed at helping students solving difficult questions.

For a better understanding of this chapter, you should also see summary of Chapter 13 Photosynthesis in higher plants , Biology, Class 11.

Class 11
Subject Biology
Book Biology
Chapter Number 13
Chapter Name  

Photosynthesis in higher plants

NCERT Solutions Class 11 Biology chapter 13 Photosynthesis in higher plants

Class 11, Biology chapter 13, Photosynthesis in higher plants solutions are given below in PDF format. You can view them online or download PDF file for future use.

Photosynthesis in higher plants

Q.1: By looking at a plant externally can you tell whether a plant is \(C_{3}\) or \(C_{4}\)? Why and how?

Ans : One cannot distinguish whether a plant is \(C_{3}\) or \(C_{4}\) by observing its leaves and other morphological features externally. Unlike \(C_{3}\) plants, the leaves of \(C_{4}\) plants have a special anatomy called Kranz anatomy and this difference can only be observed at the cellular level. For example, although wheat and maize are grasses, wheat is a \(C_{3}\) plant, while maize is a \(C_{4}\) plant.

Q.2: By looking at which internal structure of a plant can you tell whether a plant is \(C_{3}\) or \(C_{4}\)? Explain.

Ans : The leaves of \(C_{4}\) plants have a special anatomy caned Kranz anatomy. This makes them different from \(C_{3}\) plants. Special cells, known as bundle-sheath cells, surround the vascular bundles. These cells have a large number of chloroplasts. They are thick-walled and have no intercellular spaces. They are also impervious to gaseous exchange. All these anatomical features help prevent photorespiration in \(C_{4}\) Plants, thereby increasing their ability to photosynthesise.

Q.3: Even though a very few cells in a \(C_{4}\) plant carry out the biosynthetic – Calvin pathway, yet they are highly productive. Can you discuss why?

Ans : The productivity of a plant is measured by the rate at which it photosynthesises. The amount of carbon dioxide present in a plant is directly proportional to the rate of photosynthesis. \(C_{4}\) plants have a mechanism for increasing the concentration of carbon dioxide. In \(C_{4}\) plants, the Calvin cycle occurs in the bundle-sheath cells. The \(C_{4}\) compound (malic acid) from the mesophyll cells is broken down in the bundle- sheath cells. As a result, \(CO_{2}\) is released. The increase in \(CO_{2}\) ensures that the enzyme RuBisCo does not act as an oxygenase, but as a carboxylase. This prevents photorespiration and increases the rate of photosynthesis. Thus, \(C_{4}\) plants are highly productive.

Q.4: RuBisCO is an enzyme that acts both as a carboxylase and oxygenase. Why do you think RuBisCO carries out more carboxylation in \(C_{4}\) plants?

Ans : The enzyme RuBisCo is absent from the mesophyll cells of \(C_{4}\) plants. It is present in the bundle-sheath cells surrounding the vascular bundles. In \(C_{4}\) plants, the Calvin cycle occurs in the bundle-sheath cells. The primary \(CO_{2}\) acceptor in the mesophyll cells is phosphoenolpyruvate — a three-carbon compound. It is converted into the four-carbon compound oxaloacetic acid (OAA). OAA is further converted into malic acid. Malic acid is transported to the bundle-sheath cells, where it undergoes decarboxylation and \(CO_{2}\)fixation occurs by the Calvin cycle. This prevents the enzyme RuBisCo from acting as an oxygenase.

Q.5: Suppose there were plants that had a high concentration of Chlorophyll b, but lacked chlorophyll a, would it carry out photosynthesis? Then why do plants have chlorophyll b and other accessory pigments?

Ans : Chlorophyll-a molecules act as antenna molecules. They get excited by absorbing light and emit electrons during cyclic and non-cyclic photophosphorylations. They form the reaction centres for both photosystems I and II. Chlorophyll-b and other photosynthetic pigments such as carotenoids and xanthophylls act as accessory pigments. Their role is to absorb energy and transfer it to chlorophyll-a. Carotenoids and xanthophylls also protect the chlorophyll molecule from photo-oxidation. Therefore, chlorophyll-a is essential for photosynthesis. If any plant were to lack chlorophyll-a and contain a high concentration of chlorophyll-b, then this plant would not undergo photosynthesis.

Q.6: Why is the colour of a leaf kept in the dark frequently yellow, or pale green? Which pigment do you think is more stable?

Ans : Since leaves require light to perform photosynthesis, the colour of a leaf kept in the dark changes from a darker to a lighter shade of green. Sometimes, it also turns yellow. The production of the chlorophyll pigment essential for photosynthesis is directly proportional to the amount of light available. In the absence of light, the production of chlorophyll-a molecules stops and they get broken slowly. This changes the colour of the leaf gradually to light green. During this process, the xanthophyll and carotenoid pigments become predominant, causing the leaf to become yellow. These pigments are more stable as light is not essential for their production. They are always present in plants.

Q.7: Look at leaves of the same plant on the shady side and compare it with the leaves on the sunny side. Or, compare the potted plants kept in the sunlight with those in the shade. Which of them has leaves that are darker green ? Why?

Ans : Light is a limiting factor for photosynthesis. Leaves get lesser light for photosynthesis when they are in shade. Therefore, the leaves or plants in shade perform lesser photosynthesis as compared to the leaves or plants kept in sunlight. In order to increase the rate of photosynthesis, the leaves present in shade have more chlorophyll pigments. This increase in chlorophyll content increases the amount of light absorbed by the leaves, which in turn increases the rate of photosynthesis. Therefore, the leaves or plants in shade are greener than the leaves or plants kept in the sun.

Q.8: Figure shows the effect of light on the rate of photosynthesis. Based on the graph, answer the following questions: 
(a) At which point/s (A, B or C) in the curve is light a limiting factor? 
(b) What could be the limiting factor/s in region A? 
(c) What do C and D represent on the curve?

Ans : (a) Generally, light is not a limiting factor. It becomes a limiting factor for plants growing in shade or under tree canopies. In the given graph, light is a limiting factor at the point where photosynthesis is the minimum. The least value for photosynthesis is in region A. Hence, light is a limiting factor in this region. (b) Light is a limiting factor in region A. Water, temperature, and the concentration of carbon dioxide could also be limiting factors in this region. (c) Point D represents the optimum point and gives the light intensity at which the maximum photosynthesis is recorded. The rate of photosynthesis remains constant after this point, even though the intensity of light.

Q.9: Give comparison between the following: 
(a) \(C_{3}\) and \(C_{4}\) pathways 
(b) Cyclic and non-cyclic photophosphorylation 
(c) Anatomy of leaf in \(C_{3}\) and \(C_{4}\) plants

Ans : (a) \(C_{3}\) and \(C_{4}\) pathways (b) Cyclic and non-cyclic photophosphorylation (c) Anatomy of leaf in \(C_{3}\) and \(C_{4}\) plants

Did you find NCERT Solutions Class 11 Biology chapter 13 Photosynthesis in higher plants helpful? If yes, please comment below. Also please like, and share it with your friends!

NCERT Solutions Class 11 Biology chapter 13 Photosynthesis in higher plants- Video

You can also watch the video solutions of NCERT Class11 Biology chapter 13 Photosynthesis in higher plants here.

Video – will be available soon.

If you liked the video, please subscribe to our YouTube channel so that you can get more such interesting and useful study resources.

Download NCERT Solutions Class 11 Biology chapter 13 Photosynthesis in higher plants In PDF Format

You can also download here the NCERT Solutions Class 11 Biology chapter 13 Photosynthesis in higher plants in PDF format.

Click Here to download NCERT Solutions for Class 11 Biology chapter 13 Photosynthesis in higher plants

NCERT / CBSE Book for Class 11 Biology

You can download the NCERT Book for Class 11 Biology in PDF format for free. Otherwise you can also buy it easily online.

  • Click here for NCERT Book for Class 11 Biology
  • Click here to buy NCERT Book for Class 11 Biology

All NCERT Solutions Class 11

All NCERT Solutions

You can also check out NCERT Solutions of other classes here. Click on the class number below to go to relevant NCERT Solutions of Class 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

Class 4 Class 5 Class 6
Class 7 Class 8 Class 9
Class 10 Class 11 Class 12

Download the NCERT Solutions app for quick access to NCERT Solutions Class 11 Biology Chapter 13 Photosynthesis in higher plants. It will help you stay updated with relevant study material to help you top your class!

Previous  Next

 

ATSE 2019 | Scholarship Worth 12 Lac Apply Now!!