NCERT Class XI Biology: Chapter 12 – Mineral Nutrition

National Council of Educational Research and Training (NCERT) Book for Class XI
Subject: Biology
Chapter: Chapter 12 – Mineral Nutrition

Class XI NCERT Biology Text Book Chapter 12 Mineral Nutrition is given below.

The basic needs of all living organisms are essentially the same. Theyrequire macromolecules, such as carbohydrates, proteins and fats, andwater and minerals for their growth and development.

This chapter focusses mainly on inorganic plant nutrition, whereinyou will study the methods to identify elements essential to growth anddevelopment of plants and the criteria for establishing the essentiality.You will also study the role of the essential elements, their major deficiencysymptoms and the mechanism of absorption of these essential elements.The chapter also introduces you briefly to the significance and themechanism of biological nitrogen fixation.

12.1 METHODS TO STUDY THE MINERAL REQUIREMENTS OF PLANTS

In 1860, Julius von Sachs, a prominent German botanist, demonstrated,for the first time, that plants could be grown to maturity in a definednutrient solution in complete absence of soil. This technique of growingplants in a nutrient solution is known as hydroponics. Since then, anumber of improvised methods have been employed to try and determinethe mineral nutrients essential for plants. The essence of all these methodsinvolves the culture of plants in a soil-free, defined mineral solution. Thesemethods require purified water and mineral nutrient salts. Can youexplain why this is so essential?

After a series of experiments in which the roots of the plants wereimmersed in nutrient solutions and wherein an element was added /removed or given in varied concentration, a mineral solution suitable for NCERT Class XI Biology: Chapter 12 - Mineral Nutrition

the plant growth was obtained. By this method,essential elements were identified and theirdeficiency symptoms discovered. Hydroponics hasbeen successfully employed as a technique for thecommercial production of vegetables such astomato, seedless cucumber and lettuce. It must beemphasised that the nutrient solutions must beadequately aerated to obtain the optimum growth.What would happen if solutions were poorlyaerated? Diagrammatic views of the hydroponictechnique is given in Figures 12.1 and 12.2.

12.2 ESSENTIAL MINERAL ELEMENTS

Most of the minerals present in soil can enter plantsthrough roots. In fact, more than sixty elements ofthe 105 discovered so far are found in differentplants. Some plant species accumulate selenium,some others gold, while some plants growing nearnuclear test sites take up radioactive strontium.There are techniques that are able to detect theminerals even at a very low concentration (10-8 g/mL). The question is, whether all the diverse mineralelements present in a plant, for example, gold andselenium as mentioned above, are really necessaryfor plants? How do we decide what is essential forplants and what is not?

12.2.1 Criteria for Essentiality

The criteria for essentiality of an element are givenbelow:

(a) The element must be absolutely necessary forsupporting normal growth and reproduction.

Figure 12.2 Hydroponic plant production.Plants are grown in a tube or trough placed on a slight incline. A pump  circulates anutrient solution from areservoir to the elevated end ofthe tube. The solution flowsdown the tube and returns tothe reservoir due to gravity.Inset shows a plant whoseroots are continuously bathedin aerated nutrient solution.The arrows indicates thedirection of the flow.

In the absence of the element the plants do notcomplete their life cycle or set the seeds.

(b) The requirement of the element must be specificand not replaceable by another element. Inother words, deficiency of any one elementcannot be met by supplying some otherelement.

(c) The element must be directly involved in themetabolism of the plant.

Based upon the above criteria only a few elements have been found tobe absolutely essential for plant growth and metabolism. These elementsare further divided into two broad categories based on their quantitativerequirements.

(i) Macronutrients, and
(ii) Micronutrients

Macronutrients are generally present in plant tissues in large amounts (in excess of 10 mmole Kg –1 of dry matter).  The macronutrients include carbon, hydrogen, oxygen, nitrogen, phosphorous, sulphur, potassium, calcium and   magnesium. Of these, carbon, hydrogen and oxygen are mainly obtained from CO2 and H2O, while the others are absorbed from the soil as mineral nutrition.

Micronutrients or trace elements, are needed in very small amounts (less than 10 mmole Kg –1 of dry matter). These include iron, manganese, copper, molybdenum, zinc, boron, chlorine and nickel.In addition to the 17 essential elements named above, there are some beneficial elements such as sodium, silicon, cobalt and selenium. They are required by higher plants.

Essential elements can also be grouped into four broad categories on the basis of their diverse functions. These categories are:

(i) Essential elements as components of biomolecules and hencestructural elements of cells (e.g., carbon, hydrogen, oxygen andnitrogen).

(ii) Essential elements that are components of energy-related chemicalcompounds in plants (e.g., magnesium in chlorophyll andphosphorous in ATP).

(iii) Essential elements that activate or inhibit enzymes, for example Mg2+is an activator for both ribulose bisphosphate carboxylaseoxygenaseand phosphoenol pyruvate carboxylase, both of whichare critical enzymes in photosynthetic carbon fixation; Zn2+ is anactivator of alcohol dehydrogenase and Mo of nitrogenase duringnitrogen metabolism. Can you name a few more elements thatfall in this category? For this, you will need to recollect some ofthe biochemical pathways you have studied earlier.

(iv) Some essential elements can alter the osmotic potential of a cell.Potassium plays an important role in the opening and closing ofstomata. You may recall the role of minerals as solutes indetermining the water potential of a cell.

12.2.2 Role of Macro- and Micro-nutrients

Essential elements perform several functions. They participate in variousmetabolic processes in the plant cells such as permeability of cell membrane, maintenance of osmotic concentration of cell sap, electrontransportsystems, buffering action, enzymatic activity and act as majorconstituents of macromolecules and co-enzymes.Various forms and functions of mineral elements are given below.

Nitrogen : This is the mineral element required by plants in the greatest amount. It is absorbed mainly as NO3 – though  some are also taken up as NO2 – or NH4+. Nitrogen is required by all parts of a plant, particularly the meristematic  tissues and the metabolically active cells. Nitrogen is one of the major constituents of proteins, nucleic acids, vitamins and hormones.

Phosphorus: Phosphorus is absorbed by the plants from soil in the form of phosphate ions (either as H2 PO  4- − or H2PO4− ). Phosphorus is a constituent of cell membranes, certain proteins, all nucleic acids and nucleotides, and is required for all phosphorylation reactions.

Potassium: It is absorbed as potassium ion (K+). In plants, this is requiredin more abundant quantities in the meristematic tissues, buds, leavesand root tips. Potassium helps to maintain an anion-cation balance incells and is involved in protein synthesis, opening and closing of stomata,activation of enzymes and in the maintenance of the turgidity of cells.

Plant absorbs calcium from the soil in the form of calcium ions (Ca2+). Calcium is required by meristematic and  differentiating tissues. During cell division it is used in the synthesis of cell wall, particularly as calcium pectate in the middle lamella. It is also needed during the formation of mitotic spindle. It accumulates in older leaves. It is involved in the normal functioning of the cell membranes. It activates certain enzymes and plays an important role in regulating  metabolic activities.

It is absorbed by plants in the form of divalent Mg2+. It activates the enzymes of respiration, photosynthesis and are involved in the synthesis of DNA and RNA. Magnesium is a constituent of the ring structure of chlorophyll and helps to  maintain the ribosome structure.

Plants obtain sulphur in the form of sulphate (SO2- ) 4 . Sulphur is present in two amino acids – cysteine and methionine and is the main constituent of several coenzymes, vitamins (thiamine, biotin, Coenzyme A) and ferredoxin.Plants obtain  iron in the form of ferric ions (Fe3+). It is required in larger amounts in comparison to other micronutrients. It is an  important constituent of proteins involved in the transfer of electrons like ferredoxin and cytochromes. It is reversibly  oxidised from Fe2+ to Fe3+ during electron transfer. It activates catalase enzyme, and is essential for the formation of chlorophyll.

It is absorbed in the form of manganous ions (Mn2+). It activates many enzymes involved in photosynthesis, respiration  and nitrogen metabolism. The best defined function of manganese is in the splitting of water to liberate oxygen during  photosynthesis.

Plants obtain zinc as Zn2+ ions. It activates various enzymes,especially carboxylases. It is also needed in the synthesis of auxin.It is absorbed as cupric ions (Cu2+). It is essential for the overallmetabolism in plants. Like iron, it is associated with certain enzymesinvolved in redox reactions and is reversibly oxidised from Cu+ to Cu2+.It is absorbed as BO33 or B4 O 72 . Boron is required for uptakeand utilisation of Ca2+, membrane functioning, pollen germination, cellelongation, cell differentiation and carbohydrate translocation.

Plants obtain it in the form of molybdate ions (MoO22+) . Itis a component of several enzymes, including nitrogenase and nitratereductase both of which participate in nitrogen metabolism.It is absorbed in the form of chloride anion (Cl). Along withNa+ and K+, it helps in determining the solute concentration and the anioncationbalance in cells. It is essential for the water-splitting reaction inphotosynthesis, a reaction that leads to oxygen evolution.

12.2.3 Deficiency Symptoms of Essential Elements

Whenever the supply of an essential element becomes limited, plant growthis retarded. The concentration of the essential element below which plantgrowth is retarded is termed as The element is

said to be deficient when present below the critical concentration.Since each element has one or more specific structural or functionalrole in plants, in the absence of any particular element, plants show certainmorphological changes. These morphological changes are indicative ofcertain element deficiencies and are called deficiency symptoms. Thedeficiency symptoms vary from element to element and they disappearwhen the deficient mineral nutrient is provided to the plant. However, ifdeprivation continues, it may eventually lead to the death of the plant. Theparts of the plants that show the deficiency symptoms also depend on themobility of the element in the plant. For elements that are actively mobilisedwithin the plants and exported to young developing tissues, the deficiencysymptoms tend to appear first in the older tissues. For example, thedeficiency symptoms of nitrogen, potassium and magnesium are visiblefirst in the senescent leaves. In the older leaves, biomolecules containingthese elements are broken down, making these elements available formobilising to younger leaves.

The deficiency symptoms tend to appear first in the young tissueswhenever the elements are relatively immobile and are not transportedout of the mature organs, for example, elements like sulphur and calcium are a part of the structural component of the cell and hence are not easilyreleased. This aspect of mineral nutrition of plants is of a great significanceand importance to agriculture and horticulture.

The kind of deficiency symptoms shown in plants include chlorosis,necrosis, stunted plant growth, premature fall of leaves and buds, andinhibition of cell division. Chlorosis is the loss of chlorophyll leading toyellowing in leaves. This symptom is caused by the deficiency of elementsN, K, Mg, S, Fe, Mn, Zn and Mo. Likewise, necrosis, or death of tissue,particularly leaf tissue, is due to the deficiency of Ca, Mg, Cu, K. Lack orlow level of N, K, S, Mo causes an inhibition of cell division. Some elementslike N, S, Mo delay flowering if their concentration in plants is low.You can see from the above that the deficiency of any element cancause multiple symptoms and that the same symptoms may be causedby the deficiency of one of several different elements. Hence, to identifythe deficient element, one has to study all the symptoms developed in allthe various parts of the plant and compare them with the availablestandard tables. We must also be aware that different plants also responddifferently to the deficiency of the same element.

12.2.4 Toxicity of Micronutrients

The requirement of micronutrients is always in low amounts while theirmoderate decrease causes the deficiency symptoms and a moderate increasecauses toxicity. In other words, there is a narrow range of concentration atwhich the elements are optimum. Any mineral ion concentration in tissuesthat reduces the dry weight of tissues by about 10 per cent is consideredtoxic. Such critical concentrations vary widely among differentmicronutrients. The toxicity symptoms are difficult to identify. Toxicity levelsfor any element also vary for different plants. Many a times, excess of anelement may inhibit the uptake of another element. For example, theprominent symptom of manganese toxicity is the appearance of brownspots surrounded by chlorotic veins. It is important to know thatmanganese competes with iron and magnesium for uptake and withmagnesium for binding with enzymes. Manganese also inhibit calciumtranslocation in shoot apex. Therefore, excess of manganese may, in fact,induce deficiencies of iron, magnesium and calcium. Thus, what appearsas symptoms of manganese toxicity may actually be the deficiencysymptoms of iron, magnesium and calcium. Can this knowledge be of someimportance to a farmer? a gardener? or even for you in your kitchen-garden?

12.3 MECHANISM OF ABSORPTION OF ELEMENTS

Much of the studies on mechanism of absorption of elements by plantshas been carried out in isolated cells, tissues or organs. These studies revealed that the process of absorption can be demarcated into two mainphases. In the first phase, an initial rapid uptake of ions into the ‘freespace’ or ‘outer space’ of cells – the apoplast, is passive. In the secondphase of uptake, the ions are taken in slowly into the ‘inner space’ – thesymplast of the cells. The passive movement of ions into the apoplastusually occurs through ion-channels, the trans-membrane proteins thatfunction as selective pores. On the other hand, the entry or exit of ions toand from the symplast requires the expenditure of metabolic energy, whichis an process. The movement of ions is usually called theinward movement into the cells is influx and the outward movement, efflux.You have read the aspects of mineral nutrient uptake and translocationin plants in Chapter 11.

12.4 TRANSLOCATION OF SOLUTES

Mineral salts are translocated through xylem along with the ascendingstream of water, which is pulled up through the plant by transpirationalpull. Analysis of xylem sap shows the presence of mineral salts in it. Useof radioisotopes of mineral elements also substantiate the view that theyare transported through the xylem. You have already discussed themovement of water in xylem in Chapter 11.

12.5 SOIL AS RESERVOIR OF ESSENTIAL ELEMENTS

Majority of the nutrients that are essential for the growth anddevelopment of plants become available to the roots due to weatheringand breakdown of rocks. These processes enrich the soil with dissolvedions and inorganic salts. Since they are derived from the rock minerals,their role in plant nutrition is referred to as mineral nutrition. Soilconsists of a wide variety of substances. Soil not only supplies mineralsbut also harbours nitrogen-fixing bacteria, other microbes, holds water,supplies air to the roots and acts as a matrix that stabilises the plant.Since deficiency of essential minerals affect the crop-yield, there is oftena need for supplying them through fertilisers. Both macro-nutrients(N, P, K, S, etc.) and micro-nutrients (Cu, Zn, Fe, Mn, etc.) formcomponents of fertilisers and are applied as per need.

12.6 METABOLISM OF NITROGEN

12.6.1 Nitrogen Cycle

Apart from carbon, hydrogen and oxygen, nitrogen is the mostprevalent element in living organisms. Nitrogen is a constituent ofamino acids, proteins, hormones, chlorophylls and many of thevitamins. Plants compete with microbes for the limited nitrogen that

NCERT Class XI Biology: Chapter 12 - Mineral Nutrition

is available in soil. Thus, nitrogen is a limiting nutrient for both natural and agricultural eco-systems. Nitrogen exists as two nitrogen atoms  joined by a very strong triple covalent bond (N =N). The process of conversion of nitrogen (N2) to ammonia is termed as

In nature, lightning and ultraviolet radiation provide enough energy to convert nitrogen to nitrogen oxides (NO, NO2, N2O). Industrial combustions, forest fires, automobile exhausts and power -generating stations are also sources of atmospheric nitrogen oxides. Decomposition of organic nitrogen of dead plants and animals into  ammonia is called ammonification.Some of this ammonia volatilises and re-enters the atmosphere but most of it is converted into nitrate by soil bacteria in the  following steps:

NCERT Class XI Biology: Chapter 12 - Mineral Nutrition

Ammonia is first oxidised to nitrite by the bacteria Nitrosomonas and/orNitrococcus. The nitrite is further oxidised to nitrate with the help of thebacterium Nitrobacter

Pseudomonas  Thiobacillus

12.6.2 Biological Nitrogen Fixation2, available

abundantly in the air. Only certain prokaryotic species are capable offixing nitrogen. Reduction of nitrogen to ammonia by living organisms is
NCERT Class XI Biology: Chapter 12 - Mineral Nutrition

NCERT Class XI Biology: Chapter 12 - Mineral Nutrition

Figure 12.4 Development of root nodules in soyabean : (a) Rhizobium bacteria contacta susceptible root hair, divide near it, (b) Upon successful infection ofthe root hair cause it to curl, (c) Infected thread carries the bacteria tothe inner cortex. The bacteria get modified into rod-shaped bacteroidsand cause inner cortical and pericycle cells to divide. Division andgrowth of cortical and pericycle cells lead to nodule formation, (d) Amature nodule is complete with vascular tissues continuous with thoseof the root
NCERT Class XI Biology: Chapter 12 - Mineral Nutrition

NCERT Class XI Biology: Chapter 12 - Mineral Nutrition

NCERT Class XI Biology: Chapter 12 - Mineral Nutrition

– 2radicle. Since amides contain more nitrogen than the amino acids, they are transported to other parts of the plant via xylem vessels. In addition, along with the transpiration stream the nodules of some plants (e.g., soyabean) export the fixed nitrogen as ureides. These compounds also have a particularly high nitrogen to carbon ratio.

SUMMARY

2-fixing bacteria, especially roots of legumes, can fix this atmospheric nitrogen into biologically usable forms. Nitrogen fixation  requires a strong reducing agent and energy in the form of ATP. N2-fixation is accomplished with the help of nitrogenfixing microbes, mainly Rhizobium. 2 fixation is very sensitive to oxygen. Most of the processes take place in anaerobic environment. The energy, ATP, required is provided by the respiration of the host cells. Ammonia produced following N2 fixation is incorporated into amino acids as the amino group.

EXERCISES

1. ‘All elements that are present in a plant need not be essential to its survival’.Comment.

2. Why is purification of water and nutrient salts so important in studies involvingmineral nutrition using hydroponics.

3. Explain with examples: macronutrients, micronutrients, beneficial nutrients,toxic elements and essential elements.

4. Name at least five different deficiency symptoms in plants. Describe them andcorrelate them with the concerned mineral deficiency.

5. If a plant shows a symptom which could develop due to deficiency of more thanone nutrient, how would you find out experimentally, the real deficient mineralelement?

6. Why is that in certain plants deficiency symptoms appear first in younger partsof the plant while in others they do so in mature organs?

7. How are the minerals absorbed by the plants?

8. What are the conditions necessary for fixation of atmospheric nitrogen byRhizobium. What is their role inN2 -fixation?

9. What are the steps involved in formation of a root nodule?

10. Which of the following statements are true? If false, correct them:

(a) Boron deficiency leads to stout axis.

(b) Every mineral element that is present in a cell is needed by the cell.

(c) Nitrogen as a nutrient element, is highly immobile in the plants.

(d) It is very easy to establish the essentiality of micronutrients because theyare required only in trace quantities.

« Previous Next »

Click Here for NCERT Class XI Biology All Chapters

 

Go to NCERT Class XI Biology Book Home Page All NCERT Books

Advertisements

comments