NCERT Class XI Biology: Chapter 13 – Photosynthesis in higher plants

National Council of Educational Research and Training (NCERT) Book for Class XI
Subject: Biology
Chapter: Chapter 13 – Photosynthesis in higher plants

Class XI NCERT Biology Text Book Chapter 13 Photosynthesis in higher plants is given below.

All animals including human beings depend on plants for their food. Have you ever wondered from where plants get their food? Green plants, in fact, have to make or rather synthesise the food they need and all other organisms depend on them for their needs. Green plants carry out ‘photosynthesis’, a physico-chemical process by which they use light energy to drive the synthesis of organic compounds. Ultimately, all living forms on earth depend on sunlight for energy. The use of energy from sunlight by plants doing photosynthesis is the basis of life on earth. Photosynthesis is important due to two reasons: it is the primary source of all food on earth. It is also responsible for the release of oxygen into the atmosphere by green plants. Have you ever thought what would happen if there were no oxygen to breath? This chapter focusses on the structure of the photosynthetic machinery and the various reactions that transform light energy into chemical energy.


Let us try to find out what we already know about photosynthesis. Some simple experiments you may have done in the  earlier classes have shown that chlorophyll (green pigment of the leaf), light and CO2 are required for photosynthesis to  occur.

You may have carried out the experiment to look for starch formation in two leaves – a variegated leaf or a leaf that was partially covered with black paper, and one that was exposed to light. On testing these leaves for starch it was clear that photosynthesis occurred only in the green parts of the leaves in the presence of light.

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

Another experiment you may have carried out is the half-leaf experiment, where a part of a leaf is enclosed in a test tube containing some KOH soaked cotton (which absorbs CO2), while the other half is exposed to air. The setup is then placed in light for some time. On testing for starch later in the two halves of the leaf, you must have found that the exposed part of the leaf tested positive for starch while the portion that was in the tube, tested negative. This showed that CO2 was required for photosynthesis. Can you explain how this conclusion could be drawn?


It is interesting to learn about those simple experiments that led to a gradual development in our understanding of photosynthesis.

Joseph Priestley (1733-1804) in 1770 performed a series of experiments that revealed the essential role of air in the growth of green plants. Priestley, you may recall, discovered oxygen in 1774. Priestley observed that a candle burning in a closed space – a bell jar, soon gets extinguished (Figure 13.1 a, b, c, d). Similarly, a mouse would soon suffocate in a closed space. He concluded that a burning candle or an animal that breathe the air, both somehow, damage the air. But when he placed a mint plant in the same bell jar, he found that the mouse stayed alive and the candle continued to burn. Priestley hypothesised as follows: Plants restore to the air whatever breathing animals and burning candles remove.

Can you imagine how Priestley would have conducted the experiment using a candle and a plant? Remember, he would need to rekindle the candle to test whether it burns after a few days. How many different ways can you think of to light the candle without disturbing the set-up? Using a similar setup as the one used by Priestley, but by placing it once in the dark and once in the sunlight, Jan Ingenhousz (1730-1799) showed that sunlight is essential to the plant process that somehow purifies the air fouled by burning candles or breathing animals. Ingenhousz in an elegant experiment with an aquatic plant showed that in bright sunlight, small bubbles were formed around the green parts while in the dark they did not. Later he identified these bubbles to be of oxygen. Hence he showed that it is only the green part of the plants that could release oxygen.

It was not until about 1854 that Julius von Sachs provided evidence for production of glucose when plants grow. Glucose is usually stored as starch. His later studies showed that the green substance in plants (chlorophyll as we know it now) is located in special bodies (later called chloroplasts) within plant cells. He found that the green parts in plants is where glucose is made, and that the glucose is usually stored as starch. Now consider the interesting experiments done by T.W Engelmann (1843 – 1909). Using a prism he split light into its spectral components and then illuminated a green alga, Cladophora, placed in a suspension of aerobic bacteria. The bacteria were used to detect the sites of O2 evolution. He observed that the bacteria accumulated mainly in the region of blue and red light of the split spectrum. A first action  spectrum of photosynthesis was thus described. It resembles roughly the absorption spectra of chlorophyll a and b (discussed in section 13.4).

By the middle of the nineteenth century the key features of plant photosynthesis were known, namely, that plants could use light energy to make carbohydrates from CO2 and water. The empirical equation representing the total process of photosynthesis for oxygen evolving organisms was then understood as:

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

where [CH2O] represented a carbohydrate (e.g., glucose, a six-carbon sugar). A milestone contribution to the understanding of photosynthesis was that made by a microbiologist, Cornelius van Niel (1897-1985), who, based on his studies of purple and green bacteria, demonstrated that photosynthesis is essentially a light-dependent reaction in which hydrogen from a suitable oxidisable compound reduces carbon dioxide to carbohydrates. This can be expressed by:

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

In green plants H2O is the hydrogen donor and is oxidised to O2. Some organisms do not release O2 during photosynthesis. When H2S, instead is the hydrogen donor for purple and green sulphur bacteria, the ‘oxidation’ product is sulphur or sulphate depending on the organism and not O2. Hence, he inferred that the O2 evolved by the green plant comes from H2O, not from carbon dioxide. This was later proved by using radioisotopic techniques. The correct  equation, that would represent the overall process of photosynthesis is therefore:

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

reaction but description of a multistep process called photosynthesis. Can you explain why twelve molecules of water as substrate are used in the equation given above?


You would of course answer: in ‘the green leaf’ or you may add, ‘in the chloroplasts’ based on what you earlier read in Chapter 8. You are definitely right. Photosynthesis does take place in the green leaves of plants but it does so also in other green parts of the plants. Can you name some other parts where you think photosynthesis may occur?

You would recollect from previous unit that the mesophyll cells in the leaves, have a large number of chloroplasts. Usually the chloroplasts align themselves along the walls of the mesophyll cells, such that they get the optimum quantity of the incident light. When do you think the chloroplasts will be aligned with their flat surfaces parallel to the walls? When would they be perpendicular to the incident light?

You have studied the structure of chloroplast in Chapter 8. Withinthe chloroplast there is the membranous system consisting of grana, thestroma lamellae, and the fluid stroma (Figure 13.2). There is a clear divisionof labour within the chloroplast. The membrane system is responsible fortrapping the light energy and also for the synthesis of ATP and NADPH.In stroma, enzymatic reactions incorporate CO2 into the plant leading tothe synthesis of sugar, which in turn forms starch. The former set ofreactions, since they are directly light driven are called light reactions.The latter are not directly light driven but are dependent on the productsof light reactions (ATP and NADPH). Hence, to distinguish the latter theyare called, by convention, as dark reactions. However, this should not beconstrued to mean that they occur in darkness or that they are not lightdependent.

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants
NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants


Looking at plants have you ever wondered why and how there are so many shades of green in their leaves – even in the same plant? We can look for an answer to this question by trying to separate the leaf pigments of any green plant through paper chromatography. A

chromatographic separation of the leaf pigments shows that the colour that we see in leaves is not due to a single pigment but due to four pigments: Chlorophyll a (bright or blue green in the chromatogram), chlorophyll b (yellow green), xanthophylls (yellow) and carotenoids (yellow to yellow-orange). Let us now see what roles various pigments play in photosynthesis. Pigments are substances that have an ability to absorb light, at specific wavelengths. Can you guess which is the most abundant plant

pigment in the world? Let us study the graph showing the ability of chlorophyll a pigment to absorb lights of different wavelengths (Figure 13.3 a). Of course, you are familiar with the wavelength of the visible spectrum of light as well as the VIBGYOR.

From Figure 13.3a can you determine the wavelength (colour of light) at which chlorophyll a shows the maximum absorption? Does it show another absorption peak at any other wavelengths too? If yes, which one? Now look at Figure 13.3b showing the wavelengths at which maximum photosynthesis occurs in a plant. Can you see that the wavelengths at which there is maximum absorption by chlorophyll a, i.e., in the blue and the red regions, also shows higher rate of photosynthesis. Hence, we can conclude that chlorophyll a is the chief pigment associated with photosynthesis. But by looking at Figure 13.3c can you say that there is a complete one-to-one overlap between the absorption spectrum of chlorophyll a and the action spectrum of photosynthesis?

These graphs, together, show that most of the photosynthesis takes place in the blue and red regions of the spectrum; some photosynthesis does take place at the other wavelengths of the visible spectrum. Let us see how this happens. Though chlorophyll is the major pigment responsible for trapping light, other thylakoid pigments like chlorophyll b, xanthophylls and carotenoids, which are called accessory pigments, also absorb light and transfer the energy to chlorophyll a. Indeed, they not only enable a wider range of wavelength of incoming light to be utilised for photosyntesis but also protect chlorophyll a from photo-oxidation.

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants


Light reactions or the ‘Photochemical’ phase include light absorption, water splitting, oxygen release, and the formation of high-energy chemical intermediates, ATP and NADPH. Several complexes are involved in the process. The pigments are organised into two discrete photochemical light harvesting complexes (LHC) within the Photosystem I (PS I) and Photosystem II (PS II). These are named in the sequence of their discovery, and not in the sequence in which they function during the light reaction. The LHC are made up of hundreds of pigment molecules bound to proteins. Each photosystem has all the pigments (except one molecule of chlorophyll a) forming a light harvesting system also called antennae (Figure 13.4). These pigments help to make photosynthesis more efficient by absorbing different wavelengths of light. The single chlorophyll a molecule forms the reaction centre. The reaction centre is different in both the photosystems. In PS I the reaction centre chlorophyll a has an absorption peak at 700 nm, hence is called P700, while in PS II it has absorption maxima at 680 nm, and is called P680.


In photosystem II the reaction centre chlorophyll a absorbs 680 nm wavelength of red light causing electrons to become excited and jump into an orbit farther from the atomic nucleus. These electrons are picked up by an electron acceptor which passes them to an electrons transport

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

system consisting of cytochromes (Figure 13.5). This movement of electrons is downhill, in terms of an oxidation-reduction or redox potential scale. The electrons are not used up as they pass through the electron transport chain, but are passed on to the pigments of photosystem PS I. Simultaneously, electrons in the reaction centre of PS I are also excited when they receive red light of wavelength 700 nm and are transferred to another accepter molecule that has a greater redox potential. These electrons then are moved downhill again, this time to a molecule of energy-rich NADP+. The addition of these electrons reducesNADP+ to NADPH + H+. This whole scheme oftransfer of electrons, starting from the PS II,uphill to the accepter, down the electrontransport chain to PS I, excitation of electrons,transfer to another accepter, and finally down hill to NADP+ causing it tobe reduced to NADPH + H+ is called the Z scheme, due to its charactersticshape (Figure 13.5). This shape is formed when all the carriers are placedin a sequence on a redox potential scale.

13.6.1 Splitting of Water

You would then ask, How does PS II supply electrons continuously? Theelectrons that were moved from photosystem II must be replaced. This isachieved by electrons available due to splitting of water. The splitting ofwater is associated with the PS II; water is split into H+, [O] and electrons.This creates oxygen, one of the net products of photosynthesis. Theelectrons needed to replace those removed from photosystem I are providedby photosystem II.

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

We need to emphasise here that the water splitting complex is associatedwith the PS II, which itself is physically located on the inner side of themembrane of the thylakoid. Then, where are the protons and O2 formedlikely to be released – in the lumen? or on the outer side of the membrane?

13.6.2 Cyclic and Non-cyclic Photo-phosphorylation

Living organisms have the capability of extracting energy from oxidisable substances and store this in the form of bond energy. Special substances like ATP, carry this energy in their chemical bonds. The process of which

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

ATP is synthesised by cells (in mitochondria and chloroplasts) is named phosphorylation. Photophosphorylation is the synthesis of ATP from

ADP and inorganic phosphate in the presence of light. When the two photosystems work in a series, first PS II and then the PS I, a process called non-cyclic photo-phosphorylation occurs. The two photosystems are connected through an electron transport chain, as seen earlier – in the Z scheme. Both ATP and

NADPH + H+ are synthesised by this kind of electron flow (Figure 13.5).

When only PS I is functional, the electron is circulated within the photosystem and the phosphorylation occurs due to cyclic flow of electrons (Figure 13.6). A possible location where this could be happening is in the stroma lamellae. While the membrane or lamellae of the grana have both PS I and PS II the stroma lamellae membranes lack PS II as well as NADP reductase enzyme. The excited electron does not pass on to NADP+ but iscycled back to the PS I complex through the electron transport chain(Figure 13.6). The cyclic flow hence, results only in the synthesis of ATP,but not of NADPH + H+. Cyclic photophosphorylation also occurs whenonly light of wavelengths beyond 680 nm are available for excitation.

13.6.3 Chemiosmotic Hypothesis

Let us now try and understand how actually ATP is synthesised in the chloroplast. The chemiosmotic hypothesis has been put forward to explain the mechanism. Like in respiration, in photosynthesis too, ATP synthesis is linked to development of a proton gradient across a membrane. This time these are membranes of the thylakoid. There is one difference though, here the proton accumulation is towards the inside of the membrane, i.e., in the lumen. In respiration, protons accumulate in the intermembrane space of the mitochondria when electrons move through the ETS (Chapter 14).

Let us understand what causes the proton gradient across the membrane. We need to consider again the processes that take place during the activation of electrons and their transport to determine the steps that cause a proton gradient to develop (Figure 13.7).

(a) Since splitting of the water molecule takes place on the inner side of the membrane, the protons or hydrogen ions that are produced by the splitting of water accumulate within the lumen of the thylakoids.
NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

(b) As electrons move through the photosystems, protons are transported across the membrane. This happens because the primary accepter of electron which is located towards the outer side of the membrane transfers its electron not to an electron carrier but to an H carrier. Hence, this molecule removes a proton from the stroma while transporting an electron. When this molecule passes on its electron to the electron carrier on the inner side of the membrane, the proton
is released into the inner side or the lumen side of the membrane.

(c) The NADP reductase enzyme is located on the stroma side of themembrane. Along with electrons that come from the accepter ofelectrons of PS I, protons are necessary for the reduction of NADP+ toNADPH+ H+. These protons are also removed from the stroma.

Hence, within the chloroplast, protons in the stroma decrease in number, while in the lumen there is accumulation of protons. This creates a proton gradient across the thylakoid membrane as well as a measurable decrease in pH in the lumen.

Why are we so interested in the proton gradient? This gradient is important because it is the breakdown of this gradient that leads to release of energy. The gradient is broken down due to the movement of protons across the membrane to the stroma through the transmembrane channel of the F0 of the ATPase. The ATPase enzyme consists of two parts: onecalled the F0 is embedded in the membrane and forms a transmembranechannel that carries out facilitated diffusion of protons across themembrane. The other portion is called F1 and protrudes on the outersurface of the thylakoid membrane on the side that faces the stroma. Thebreak down of the gradient provides enough energy to cause aconformational change in the F1 particle of the ATPase, which makes theenzyme synthesise several molecules of energy-packed ATP.

Chemiosmosis requires a membrane, a proton pump, a proton gradient and ATPase. Energy is used to pump protons across a membrane, to create a gradient or a high concentration of protons within the thylakoid lumen. ATPase has a channel that allows diffusion of protons back across the membrane; this releases enough energy to activate ATPase enzyme that catalyses the formation of ATP.

Along with the NADPH produced by the movement of electrons, theATP will be used immediately in the biosynthetic reaction taking place inthe stroma, responsible for fixing CO2, and synthesis of sugars.


We learnt that the products of light reaction are ATP, NADPH and O2. Ofthese O2 diffuses out of the chloroplast while ATP and NADPH are used todrive the processes leading to the synthesis of food, more accurately,sugars. This is the biosynthetic phase of photosynthesis. This processdoes not directly depend on the presence of light but is dependent on theproducts of the light reaction, i.e., ATP and NADPH, besides CO2 andH2O. You may wonder how this could be verified; it is simple: immediatelyafter light becomes unavailable, the biosynthetic process continues forsome time, and then stops. If then, light is made available, the synthesisstarts again.

Can we, hence, say that calling the biosynthetic phase as the dark reaction is a misnomer? Discuss this amongst yourselves.

Let us now see how the ATP and NADPH are used in the biosyntheticphase. We saw earlier that CO2 is combined with H2O to produce (CH2O)nor sugars. It was of interest to scientists to find out how this reactionproceeded, or rather what was the first product formed when CO2 is takeninto a reaction or fixed. Just after world war II, among the several effortsto put radioisotopes to beneficial use, the work of Melvin Calvin isexemplary. The use of radioactive 14C by him in algal photosynthesisstudies led to the discovery that the first CO2 fixation product was a3-carbon organic acid. He also contributed to working out the completebiosynthetic pathway; hence it was called Calvin cycle after him. Thefirst product identified was 3-phosphoglyceric acid or in short PGA.

How many carbon atoms does it have?

Scientists also tried to know whether all plants have PGA as the firstproduct of CO2 fixation, or whether any other product was formed inother plants. Experiments conducted over a wide range of plants led tothe discovery of another group of plants, where the first stable product ofCO2 fixation was again an organic acid, but one which had 4 carbonatoms in it. This acid was identified to be oxaloacetic acid or OAA. Sincethen CO2 assimilation during photosynthesis was said to be of two maintypes: those plants in which the first product of CO2 fixation is a C3 acid(PGA), i.e., the C3 pathway, and those in which the first product was a C4acid (OAA), i.e., the C4 pathway. These two groups of plants showedother associated characteristics that we will discuss later.

13.7.1 The Primary Acceptor of CO2

Let us now ask ourselves a question that was asked by the scientists who were struggling to understand the ‘dark reaction’. How many carbon atoms would a molecule have which after accepting (fixing) CO2, would have 3 carbons (of PGA)?

The studies very unexpectedly showed that the accepter moleculewas a 5-carbon ketose sugar – it was ribulose bisphosphate (RuBP).Did any of you think of this possibility? Do not worry; the scientistsalso took a long time and conducted many experiments to reach thisconclusion. They also believed that since the first product was a C3acid, the primary acceptor would be a 2-carbon compound; they spentmany years trying to identify a 2-carbon compound before theydiscovered the 5-carbon RuBP.

13.7.2 The Calvin Cycle

Calvin and his co-workers then worked out the whole pathway and showedthat the pathway operated in a cyclic manner; the RuBP was regenerated.Let us now see how the Calvin pathway operates and where the sugar issynthesised. Let us at the outset understand very clearly that the Calvinpathway occurs in all photosynthetic plants; it does not matter whetherthey have C3 or C4 (or any other) pathways (Figure 13.8).

For ease of understanding, the Calvin cycle can be described under three stages: carboxylation, reduction and  regeneration.

1. Carboxylation – Carboxylation is the fixation of CO2 into a stable organic intermediate. Carboxylation is the most crucial step of the Calvin cycle where CO2 is utilised for the carboxylation of RuBP. This reaction iscatalysed by the enzyme RuBP carboxylase which results in the formationof two molecules of 3-PGA. Since this enzyme also has an oxygenationactivity it would be more correct to call it RuBP carboxylase-oxygenaseor RuBisCO.

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

2. Reduction – These are a series of reactions that lead to the formationof glucose. The steps involve utilisation of 2 molecules of ATP forphosphorylation and two of NADPH for reduction per CO2 moleculefixed. The fixation of six molecules of CO2 and 6 turns of the cycle arerequired for the removal of one molecule of glucose from the pathway.

3. Regeneration – Regeneration of the CO2 acceptor molecule RuBP iscrucial if the cycle is to continue uninterrupted. The regenerationsteps require one ATP for phosphorylation to form RuBP.Hence for every CO2 molecule entering the Calvin cycle, 3 moleculesof ATP and 2 of NADPH are required. It is probably to meet this differencein number of ATP and NADPH used in the dark reaction that the cyclicphosphorylation takes place.

To make one molecule of glucose 6 turns of the cycle are required.Work out how many ATP and NADPH molecules will be required to makeone molecule of glucose through the Calvin pathway.It might help you to understand all of this if we look at what goes inand what comes out of the Calvin cycle.


NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants


Plants that are adapted to dry tropical regions have the C4 pathwaymentioned earlier. Though these plants have the C4 oxaloacetic acid asthe first CO2 fixation product they use the C3 pathway or the Calvin cycleas the main biosynthetic pathway. Then, in what way are they differentfrom C3 plants? This is a question that you may reasonably ask.C4 plants are special: They have a special type of leaf anatomy, theytolerate higher temperatures, they show a response to highlight intensities,they lack a process called photorespiration and have greater productivityof biomass. Let us understand these one by one.

Study vertical sections of leaves, one of a C3 plant and the other of a Cplant. Did you notice the differences? Do both have the same types ofmesophylls? Do they have similar cells around the vascular bundle sheath?The particularly large cells around the vascular bundles of the C4pathway plants are called bundle sheath cells, and the leaves whichhave such anatomy are said to have ‘Kranz’ anatomy. ‘Kranz’ means‘wreath’ and is a reflection of the arrangement of cells. The bundle sheathcells may form several layers around the vascular bundles; they arecharacterised by having a large number of chloroplasts, thick wallsimpervious to gaseous exchange and no intercellular spaces. You maylike to cut a section of the leaves of C4 plants – maize or sorghum – toobserve the Kranz anatomy and the distribution of mesophyll cells.It would be interesting for you to collect leaves of diverse species ofplants around you and cut vertical sections of the leaves. Observe underthe microscope – look for the bundle sheath around the vascularbundles. The presence of the bundle sheath would help you identifythe C4 plants.

Now study the pathway shown in Figure 13.9. This pathway that hasbeen named the Hatch and Slack Pathway, is again a cyclic process. Letus study the pathway by listing the steps.The primary CO2 acceptor is a 3-carbon molecule phosphoenolpyruvate (PEP) and is present in the mesophyll cells. The enzymeresponsible for this fixation is PEP carboxylase or PEPcase. It is importantto register that the mesophyll cells lack RuBisCO enzyme. The C4 acidOAA is formed in the mesophyll cells.

It then forms other 4-carbon compounds like malic acid or asparticacid in the mesophyll cells itself, which are transported to the bundlesheath cells. In the bundle sheath cells these C4 acids are broken downto release CO2 and a 3-carbon molecule.The 3-carbon molecule is transported back to the mesophyll where itis converted to PEP again, thus, completing the cycle.The CO2 released in the bundle sheath cells enters the C3 or the Calvinpathway, a pathway common to all plants. The bundle sheath cells are

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

rich in an enzyme Ribulose bisphosphate carboxylase-oxygenase(RuBisCO), but lack PEPcase. Thus, the basic pathway that results inthe formation of the sugars, the Calvin pathway, is common to the C3 andC4 plants.

Did you note that the Calvin pathway occurs in all the mesophyllcells of the C3 plants? In the C4 plants it does not take place in themesophyll cells but does so only in the bundle sheath cells.


Let us try and understand one more process that creates an importantdifference between C3 and C4 plants – Photorespiration. To understandphotorespiration we have to know a little bit more about the first step ofthe Calvin pathway – the first CO2 fixation step. This is the reactionwhere RuBP combines with CO2 to form 2 molecules of 3PGA, that iscatalysed by RuBisCO.


NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

RuBisCO that is the most abundant enzyme in the world (Do you wonder why?) is characterised by the fact that its active site can bind to both CO2 and O2 – hence the name. Can you think how this could bepossible? RuBisCO has a much greater affinity for CO2 than for O2. Imaginewhat would happen if this were not so! This binding is competitive. It isthe relative concentration of O2 and CO2 that determines which of the twowill bind to the enzyme.

In C3 plants some O2 does bind to RuBisCO, and hence CO2 fixation isdecreased. Here the RuBP instead of being converted to 2 molecules ofPGA binds with O2 to form one molecule and phosphoglycolate in apathway called photorespiration. In the photorespiratory pathway, thereis neither synthesis of sugars, nor of ATP. Rather it results in the releaseof CO2 with the utilisation of ATP. In the photorespiratory pathway thereis no synthesis of ATP or NADPH. Therefore, photorespiration is a wastefulprocess.

In C4 plants photorespiration does not occur. This is because theyhave a mechanism that increases the concentration of CO2 at the enzymesite. This takes place when the C4 acid from the mesophyll is brokendown in the bundle cells to release CO2 – this results in increasing theintracellular concentration of CO2. In turn, this ensures that the RuBisCOfunctions as a carboxylase minimising the oxygenase activity.Now that you know that the C4 plants lack photorespiration, youprobably can understand why productivity and yields are better in theseplants. In addition these plants show tolerance to higher temperatures.Based on the above discussion can you compare plants showingthe C3 and the C4 pathway? Use the table format given and fill in theinformation.


NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants


An understanding of the factors that affect photosynthesis is necessary.The rate of photosynthesis is very important in determining the yield ofplants including crop plants. Photosynthesis is under the influence ofseveral factors, both internal (plant) and external. The plant factors includethe number, size, age and orientation of leaves, mesophyll cells andchloroplasts, internal CO2 concentration and the amount of chlorophyll.The plant or internal factors are dependent on the genetic predispositionand the growth of the plant.

The external factors would include the availability of sunlight,temperature, CO2 concentration and water. As a plant photosynthesises,all these factors will simultaneously affect its rate. Hence, though severalfactors interact and simultaneously affect photosynthesis or CO2 fixation,usually one factor is the major cause or is the one that limits the rate.Hence, at any point the rate will be determined by the factor available atsub-optimal levels.

When several factors affect any [bio] chemical process, Blackman’s(1905) Law of Limiting Factors comes into effect. This states the following:If a chemical process is affected by more than one factor, then itsrate will be determined by the factor which is nearest to its minimalvalue: it is the factor which directly affects the process if its quantity ischanged.

For example, despite the presence of a greenleaf and optimal light and CO2 conditions, theplant may not photosynthesise if the temperatureis very low. This leaf, if given the optimaltemperature, will start photosynthesising.

NCERT Class XI Biology Chapter 13 - Photosynthesis in higher plants

13.10.1 Light

We need to distinguish between light quality, lightintensity and the duration of exposure to light,while discussing light as a factor that affectsphotosynthesis. There is a linear relationshipbetween incident light and CO2 fixation rates atlow light intensities. At higher light intensities,gradually the rate does not show further increaseas other factors become limiting (Figure 13.10).What is interesting to note is that light saturationoccurs at 10 per cent of the full sunlight. Hence,except for plants in shade or in dense forests, lightis rarely a limiting factor in nature. Increase in incident light beyond a point causes the breakdown of chlorophyll and adecrease in photosynthesis.

13.10.2 Carbon dioxide Concentration

Carbon dioxide is the major limiting factor for photosynthesis. Theconcentration of CO2 is very low in the atmosphere (between 0.03 and0.04 per cent). Increase in concentration upto 0.05 per cent can cause anincrease in CO2 fixation rates; beyond this the levels can become damagingover longer periods.

The C3 and C4 plants respond differently to CO2 concentrations. Atlow light conditions neither group responds to high CO2 conditions. Athigh light intensities, both C3 and C4 plants show increase in the rates ofphotosynthesis. What is important to note is that the C4 plants showsaturation at about 360 ìlL-1 while C3 responds to increased CO2concentration and saturation is seen only beyond 450 ìlL-1. Thus, currentavailability of CO2 levels is limiting to the C3 plants.

The fact that C3 plants respond to higher CO2 concentration byshowing increased rates of photosynthesis leading to higher productivityhas been used for some greenhouse crops such as tomatoes and bellpepper. They are allowed to grow in carbon dioxide enriched atmospherethat leads to higher yields.

13.10.3 Temperature

The dark reactions being enzymatic are temperature controlled. Thoughthe light reactions are also temperature sensitive they are affected to amuch lesser extent. The C4 plants respond to higher temperatures andshow higher rate of photosynthesis while C3 plants have a much lowertemperature optimum.

The temperature optimum for photosynthesis of different plants alsodepends on the habitat that they are adapted to. Tropical plants have ahigher temperature optimum than the plants adapted to temperateclimates.

13.10.4 Water

Even though water is one of the reactants in the light reaction, the effect ofwater as a factor is more through its effect on the plant, rather than directlyon photosynthesis. Water stress causes the stomata to close hence reducingthe CO2 availability. Besides, water stress also makes leaves wilt, thus,reducing the surface area of the leaves and their metabolic activity as well.


Green plants make their own food by photosynthesis. During this process carbondioxide from the atmosphere is taken in by leaves through stomata and used formaking carbohydrates, principally glucose and starch. Photosynthesis takes placeonly in the green parts of the plants, mainly the leaves. Within the leaves, themesophyll cells have a large number of chloroplasts that are responsible for CO2fixation. Within the chloroplasts, the membranes are sites for the light reaction,while the chemosynthetic pathway occurs in the stromatal aperture.Photosynthesis has two stages: the light reaction and the carbon fixing reactions.In the light reaction the light energy is absorbed by the pigments present in theantenna, and funnelled to special chlorophyll a molecules called reaction centrechlorophylls. There are two photosystems, PS I and PS II. PS I has a 700 nmabsorbing chlorophyll a P700 molecule at its reaction centre, while PS II has aP680 reaction centre that absorbs red light at 680 nm. After absorbing light,electrons are excited and transferred through PS II and PS I and finally to NADforming NADH. During this process a proton gradient is created across themembrane of the thylakoid. The breakdown of the protons gradient due tomovement through the F0 part of the ATPase enzyme releases enough energy forsynthesis of ATP. Splitting of water molecules is associated with PS II resulting inthe release of O2, protons and transfer of electrons to PS II.

In the carbon fixation cycle, CO2 is added by the enzyme, RuBisCO, to a 5-carbon compound RuBP that is converted to 2 molecules of 3-carbon PGA. Thisis then converted to sugar by the Calvin cycle, and the RuBP is regenerated. Duringthis process ATP and NADPH synthesised in the light reaction are utilised. RuBisCOalso catalyses a wasteful oxygenation reaction in C3 plants: photorespiration.Some tropical plants show a special type of photosynthesis called C4 pathway.In these plants the first product of CO2 fixation that takes place in the mesophyll,is a 4-carbon compound. In the bundle sheath cells the Calvin pathway is carriedout for the synthesis of carbohydrates.


1. By looking at a plant externally can you tell whether a plant is C3 or C4? Why andhow?

2. By looking at which internal structure of a plant can you tell whether a plant isC3 or C4? Explain.

3. Even though a very few cells in a C4 plant carry out the biosynthetic – Calvinpathway, yet they are highly productive. Can you discuss why?

4. RuBisCO is an enzyme that acts both as a carboxylase and oxygenase. Why doyou think RuBisCO carries out more carboxylation in C4 plants?

5. Suppose there were plants that had a high concentration of Chlorophyll b, butlacked chlorophyll a, would it carry out photosynthesis? Then why do plantshave chlorophyll b and other accessory pigments?

6. Why is the colour of a leaf kept in the dark frequently yellow, or pale green?Which pigment do you think is more stable?

7. Look at leaves of the same plant on the shady side and compare it with theleaves on the sunny side. Or, compare the potted plants kept in the sunlight withthose in the shade. Which of them has leaves that are darker green ? Why?

8. Figure shows the effect of light on the rate of photosynthesis. Based on thegraph, answer the following questions:

(a) At which point/s (A, B or C) in the curve is light a limiting factor?

(b) What could be the limiting factor/s in region A?

(c) What do C and D represent on the curve?

9. Give comparison between the following:

(a) C3 and C4 pathways

(b) Cyclic and non-cyclic photophosphorylation

(c) Anatomy of leaf in C3 and C4 plants

Go to NCERT Class XI Biology Book Home Page All NCERT Books