Candidates can download NCERT Exemplar Class 12 Physics Chapter 11 from this page. The exemplar has been provided by the National Council of Educational Research & Training (NCERT) and the candidates can check it from below for free of cost. It contains objective, very short answer type, short answer type, and long answer type questions. Along with it, the answer for each question has also been provided. From the NCERT Exemplar Class 12 Physics Chapter 11, candidates can understand the level and type of questions that are asked in the exam.

**Click Here for Class 12 Physics Notes**## NCERT Exemplar Class 12 Physics Chapter 11 Dual Nature of Radiation and Matter

NCERT Class 12 Physics Chapter 11 is for Dual Nature of Radiation and Matter. The type of questions that will be asked from NCERT Class 12 Physics Chapter 11 are displayed in the below provided NCERT Exemplar Class 12 Physics Chapter 11. With the help of it, candidates can prepare well for the examination.

**Also Check: **NCERT Solutions for Class 12 Physics

### Multiple Choice Questions (MCQ I)

- A particle is dropped from a height H. The de Broglie wavelength of the particle as a function of height is proportional to

(a) H

(b) H^{1/2 }(c) H^{0 }(b) H^{-1/2} - The wavelength of a photon needed to remove a proton from a nucleus which is bound to the nucleus with 1 MeV energy is nearly

(a) 1.2 nm

(b) 1.2 × 10^{-3}nm

(c) 1.2 × 10^{-6}nm

(d) 1.2 × 10^{1}nm - Consider a beam of electrons (each electron with energy E
_{0}) incident on a metal surface kept in an evacuated chamber. Then

(a) no electrons will be emitted as only photons can emit electrons.

(b) electrons can be emitted but all with an energy, E_{0}.

(c) electrons can be emitted with any energy, with a maximum of E_{0}– φ (φ is the work function).

(d) electrons can be emitted with any energy, with a maximum of E_{0}. - Consider Fig. 11.7 in the NCERT text book of physics for Class XII. Suppose the voltage applied to A is increased. The diffracted beam will have the maximum at a value of θ that

(a) will be larger than the earlier value.

(b) will be the same as the earlier value.

(c) will be less than the earlier value.

(d) will depend on the target. - A proton, a neutron, an electron and an α-particle have same energy. Then their de Broglie wavelengths compare as

(a) λ_{p}= λ_{n}> λ_{e}> λ_{α }(b) λ_{α}< λ_{p}= λ_{n}> λ_{e }(c) λ_{e}< λ_{p}= λ_{n}> λ_{α }(d) λ_{e}= λ_{p}= λ_{n}= λ_{α} - An electron is moving with an initial velocity and is in a magnetic field Then it’s de Broglie wavelength

(a) remains constant.

(b) increases with time.

(c) decreases with time.

(d) increases and decreases periodically. - An electron (mass m) with an initial velocity is in an electric field It’s de Broglie wavelength at time t is given by

- An electron (mass m) with an initial velocity is in an electric field it’s de Breoglie wavelength at time t is given by

### Multiple Choice Questions (MCQ II)

- Relativistic corrections become necessary when the expression for the kinetic energy (1/2)mv
^{2}, becomes comparable with mc^{2}, where m is the mass of the particle. At what de Broglie wavelength will relativistic corrections become important for an electron?

(a) λ =10nm

(b) λ =10^{–1}nm

(c) λ =10^{–4}nm

(d) λ =10^{–6}nm - Two particles A
_{1}sand A_{2}of masses m1, m2 (m1 > m2) have the same de Broglie wavelength. Then

(a) their momenta are the same.

(b) their energies are the same.

(c) energy of A_{1}is less than the energy of A_{2}.

(d) energy of A_{1}is more than the energy of A_{2}. - The de Broglie wavelength of a photon is twice the de Broglie wavelength of an electron. The speed of the electron is v
_{e}= (c/100). Then

(a) (E_{e}/E_{p}) = 10^{-4 }(b) (E_{e}/E_{p}) = 10^{-2 }(c) (p_{e}/m_{e}c) = 10^{-2 }(d) (p_{e}/m_{e}c) = 10^{-4} - Photons absorbed in matter are converted to heat. A source emitting n photon/sec of frequency ν is used to convert 1 kg of ice at 0°C to water at 0°C. Then, the time T taken for the conversion

(a) decreases with increasing n, with ν fixed.

(b) decreases with n fixed, ν increasing

(c) remains constant with n and ν changing such that nν = constant.

(d) increases when the product nν increases. - A particle moves in a closed orbit around the origin, due to a force which is directed towards the origin. The de Broglie wavelength of the particle varies cyclically between two values λ
_{1}, λ_{2}with λ_{1}> λ_{2}. Which of the following statement are true?

(a) The particle could be moving in a circular orbit with origin as centre

(b) The particle could be moving in an elliptic orbit with origin as its focus.

(c) When the de Broglie wave length is λ_{1}, the particle is nearer the origin than when its value is λ_{2}.

(d) When the de Broglie wavelength is λ_{2}, the particle is nearer the origin than when its value is λ_{1}.

### Very Short Answer Type Questions

- A proton and an α-particle are accelerated, using the same potential difference. How are the de Broglie wavelengths λ
_{p}and λ_{a}related to each other? - i) In the explanation of photo electric effect, we assume one photon of frequency ν collides with an electron and transfers its energy. This leads to the equation for the maximum energy E
_{max}of the emitted electron as E_{max}= hν – φ_{0 }where φ_{0}is the work function of the metal. If an electron absorbs 2 photons (each of frequency ν ) what will be the maximum energy for the emitted electron?

(ii) Why is this fact (two photon absorption) not taken into consideration in our discussion of the stopping potential? - There are materials which absorb photons of shorter wavelength and emit photons of longer wavelength. Can there be stable substances which absorb photons of larger wavelength and emit light of shorter wavelength.
- Do all the electrons that absorb a photon come out as photoelectrons?
- There are two sources of light, each emitting with a power of 100 W. One emits X-rays of wavelength 1nm and the other visible light at 500 nm. Find the ratio of number of photons of X-rays to the photons of visible light of the given wavelength?

### Short Answer Type Questions

- Consider Fig.11.1 for photoemission. How would you reconcile with momentum-conservation? Note light (photons) have momentum in a different direction than the emitted electrons.

- Consider a metal exposed to light of wavelength 600 nm. The maximum energy of the electron doubles when light of wavelength 400 nm is used. Find the work function in eV.
- Assuming an electron is confined to a 1nm wide region , find the uncertainty in momentum using Heisenberg Uncertainty principle (Ref Eq 11.12 of NCERT Textbook). You can assume the uncertainty in position Δx as 1nm. Assuming p Δp , find the energy of the electron in electron volts.
- Two monochromatic beams A and B of equal intensity I, hit a screen. The number of photons hitting the screen by beam A is twice that by beam B. Then what inference can you make about their frequencies?
- Two particles A and B of de Broglie wavelengths λ
_{1}and λ_{2}combine to form a particle C. The process conserves momentum. Find the de Broglie wavelength of the particle C. (The motion is one dimensional). - A neutron beam of energy E scatters from atoms on a surface with a spacing d = 0.1nm. The first maximum of intensity in the reflected beam occurs at θ = 30°. What is the kinetic energy E of the beam in eV?

### Long Answer Type Questions

- Consider a thin target (10
^{–2}m square, 10^{–3}m thickness) of sodium, which produces a photocurrent of 100μA when a light of intensity 100W/m2 (λ = 660 nm) falls on it. Find the probability that a photoelectron is produced when a photons strikes a sodium atom. [Take density of Na = 0.97 kg/m3]. - Consider an electron in front of metallic surface at a distance d (treated as an infinite plane surface). Assume the force of attraction by the plate is given as Calculate work in taking the charge to an infinite distance from the plate. Taking d = 0.1nm, find the work done in electron volts.

[Such a force law is not valid for d < 0.1nm]. - A student performs an experiment on photoelectric effect, using two materials A and B. A plot of V
_{stop}vs ν is given in Fig. 11.2.

(i) Which material A or B has a higher work function?

(ii) Given the electric charge of an electron = 1.6 × 10^{–19}C, find the value of h obtained from the experiment for both A and B.

Comment on whether it is consistent with Einstein’s theory:

- A particle A with a mass m
_{A}is moving with a velocity v and hits a particle B (mass m_{B}) at rest (one dimensional motion). Find the change in the de Broglie wavelength of the particle A. Treat the collision as elastic. - Consider a 20 W bulb emitting light of wavelength 5000Å and shining on a metal surface kept at a distance 2m. Assume that the metal surface has work function of 2 eV and that each atom on the metal surface can be treated as a circular disk of radius 1.5 Å.

(i) Estimate no. of photons emitted by the bulb per second. [Assume no other losses]

(ii) Will there be photoelectric emission?

(iii) How much time would be required by the atomic disk to receive energy equal to work function (2 eV)?

(iv) How many photons would atomic disk receive within time duration calculated in (iii) above?

(v) Can you explain how photoelectric effect was observed instantaneously?

[Hint: Time calculated in part (iii) is from classical consideration and you may further take the target of surface area say 1 cm^{2}and estimate what would happen?]

« Previous | Next » |